- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brea, Roberto J. (2)
-
Devaraj, Neal K. (2)
-
Flores, Judith (2)
-
Baiz, Carlos R. (1)
-
Baskin, Jeremy M. (1)
-
Fracassi, Alessandro (1)
-
Lamas, Alejandro (1)
-
Salvador‐Castell, Marta (1)
-
Sinha, Sunil K. (1)
-
White, Brittany M. (1)
-
Xu, Cong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Lipids remain one of the most enigmatic classes of biological molecules. Whereas lipids are well known to form basic units of membrane structure and energy storage, deciphering the exact roles and biological interactions of distinct lipid species has proven elusive. How these building blocks are synthesized, trafficked, and stored are also questions that require closer inspection. This tutorial review covers recent advances on the preparation, derivatization, and analysis of lipids. In particular, we describe several chemical approaches that form part of a powerful toolbox for controlling and characterizing lipid structure. We believe these tools will be helpful in numerous applications, including the study of lipid–protein interactions and the development of novel drug delivery systems.more » « less
-
Flores, Judith; Brea, Roberto J.; Lamas, Alejandro; Fracassi, Alessandro; Salvador‐Castell, Marta; Xu, Cong; Baiz, Carlos R.; Sinha, Sunil K.; Devaraj, Neal K. (, Angewandte Chemie International Edition)Abstract Cell membranes define the boundaries of life and primarily consist of phospholipids. Living organisms assemble phospholipids by enzymatically coupling two hydrophobic tails to a soluble polar head group. Previous studies have taken advantage of micellar assembly to couple single‐chain precursors, forming non‐canonical phospholipids. However, biomimetic nonenzymatic coupling of two alkyl tails to a polar head‐group remains challenging, likely due to the sluggish reaction kinetics of the initial coupling step. Here we demonstrate rapid de novo formation of biomimetic liposomes in water using dual oxime bond formation between two alkyl chains and a phosphocholine head group. Membranes can be generated from non‐amphiphilic, water‐soluble precursors at physiological conditions using micromolar concentrations of precursors. We demonstrate that functional membrane proteins can be reconstituted into synthetic oxime liposomes from bacterial extracts in the absence of detergent‐like molecules.more » « less
An official website of the United States government
